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In this paper, we give the canonical expression for an inner product (defined in
.'!!, the linear space of real polynomials), for which the set of orthonormal polyno
mials satisfies a (2N + I I-term recurrence relation. This result is a generalization of
Favard's theorem about orthogonal polynomials and three-term recurrence
relations. Also, we characterize these inner products in terms of symmetric
operators. Similar results are proved for some kinds of discrete Sobolev inner
products. (1993 Academic Press. loco

1. INTRODUCTION

We start by recalling some definitions. An infinite symmetric matrix
A = (a;.)~=o is called positive definite if det[(aj.);~/~o] > 0 for all n ~ 0
and non-degenerate if det[(ai./)~/=o] ¥ 0 for all n ~ O. In the same way, a
sequence (an):'=o is called positive definite or non-degenerate whenever the
matrix (ai+)i./ is.

Let B be a real symmetric bilinear form defined on the space of real poly
nomials q>. We recall that the form B is non-degenerate (B generates a
pseudo-inner product) if there exists a set of orthogonal polynomials (P,.)
with respect t,) B such that the degree of Pn is n (dgr( Pn) = n); and B is
called an inner product if B(f, f) > 0 for f'$. O. An infinite matrix can be
associated to every real symmetric bilinear mapping B putting an." =
B(t", t"). We can obtain an expression for a set of orthogonal polynomials
(p"l" with respect to B:

ao. o

Pn(X) =
all - 1,0 .•• a" - I."

x fl

n~O.

* The author expresses his gratitude to Professor F. Marcellan, for suggesting the problem
to him during his participation in Seminario de Analisis Funcional at the University of Sevilla.
This visit was supported by A.G.!. (Junta de Andalucia).
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If we put LI" = det[(a;.,);:/~o], then LI"_l = coef,,(p,,) (we write coef,,(p) for
the coefficient of t" in the polynomialp) and LI"_lLl"=B(p,,,p,,) (put
LI_ I = I). Hence, if B is an inner product, it is clear that the polynomials

n;?;O

are orthonormal, and if B is an pseudo inner product, they are pseudo
orthonormal (this means B(q", qk)=C"(j,,,b where c,,= ±1).

It is well-known that another set of orthogonal polynomials (r"),, with
respect to B must be related to (p"),, by the following formula, r" = rt" P",
where rt" is a real sequence without null terms. From here, it is easy to
prove the following characterization:

THEOREM A. (a) B is a pseudo-inner product if and only if (a;,);,/ is
non-degenerate.

(b) B is an inner product if and only if (a",);,/ is positive definite.

Given a polynomial h, by the operator h we mean the operator defined
on f!J which results from multiplication by h.

We will use the following well-known results about moment problems:
Given a sequence (a"),,, there exists a non-discrete positive measure f.l

(non-discrete means that f.l is not a finite combination of Dirac deltas) such
that a" = Jt" df.l(t) for all n ~ 0 if and only if the sequence (a"),, is a positive
definite one (see [W, pp. 136-138]).

For every real sequence (a"),,, there exists a function of bounded
variation f such that a" =Jt" df(t) for all n;?; 0 (see [Bo]), Actually,
the function f can be chosen in a more regular way (see [01]): For
every real sequence (a"),,, there exists a function f in the Schwartz space S
(so a C(jW function) vanishing at the negative real numbers and such that
a" = f t"f( t) dt for all n ;?; O. Hence, if we put

f.l(t)=f !(x)dx,
- :X

we get a C(jX(R) function f.l, for which the measure df.l(t)=f.l'(t)dt=f(t)dt
satisfies f t" df.l( t) = a". Throughout this paper, we often use this fact.

It should be noted that the second and third previous results are also
true if the sequence of polynomials (t")" is changed to any sequence of
polynomials (p,J" with dgr(p,,) = n (that is if the polynomials (p"),, are a
basis of f!J).
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The simplest inner or pseudo-inner products are defined by integrating
with respect to an arbitrary measure:

B(j, g) = f f(t) g(t) dJl(t). (1.1 )

This kind of inner or pseudo-inner products can be characterized in a
simple way:

THEOREM B. Let B be an inner product, then the following conditions are
equivalent:

(a) The operator t is symmetric for B, that is B(tj, g) = BU, tg), for
all polynomials j, g.

(b) There exists a non-discrete positive measure Jl such that B is
defined as (1.1).

Proof If t is symmetric, then a i • i = B(f, ti ) = B( 1, t i + i ) = b j +
1

. As B is
an inner product, the sequence (b n )" is positive definite and so there exists
a non-discrete positive measure J1 such that hn=Jtn dJl(t), hence B is
defined from Jl as (1.1). I

An analogous theorem can be stated for pseudo-inner products.
Also, the inner product as (l.l ) can be characterized by a certain relation

satisfied by its set of orthonormal polynomials: the three-term recurrence
relation. Indeed, if the operator t is symmetric for B, it follows easily that,
any set of orthonormal polynomials (qn)n with respect to B satisfies a
three-term recurrence relation,

where (an)n is a real sequence without null terms and (bn)n is a real
sequence.

The converse is also true, and is known as Favard's Theorem (see [F],
[Ch, p. 21]).

THEOREM C (Favard). Let (qn)n be a set of polynomials satisfying the
initial conditions qo(t) = C ~ 0, q _ I (t) =: 0 and the following three term
recurrence relation

tqn=an+1qn+1 +bnqn+anqn-I'

where (an)" is a real sequence without null terms and (bn)n is a real sequence.
Then there exists a non-discrete positive measure Jl such that (q"),, are
orthonormal with respect to the inner product defined by Jl.



86 ANTONIO J. DURAN

Prool First of all, it should be noticed that the initial conditions
qo(t) = C ~ 0, q I (t) == 0, and the three-term recurrence relation imply that
the sequence (a"),, must be a nonvanishing one. So this condition could be
removed from the hypothesis. This observation was pointed out to the
author by F. Marcelhln.

From the relation we obtain that dgr(q,,) = n and so the set of polyno
mials (q"),, is a basis of :1'. We define an inner product in the following
way, ifj'=Lkakqk and g=Lkhkqk, then BUg)=Lkakhk' It is clear
that (q"ln are orthonormal with respect to B, and from the three term
recurrence relation it follows that the operator t is symmetric for B. Now,
we can apply Theorem B. I

We can state a similar theorem for pseudo-inner products:

THEOREM D. Let (q"),, he a set of' polynomials satislying the initial
conditiolls qo(t) = C ~ 0, q \(t) == 0, and

(1.2)

where (a"),, is a real sequence without null terms, (h"),, is a real sequence and
(/;"),, is a sign sequence (that is I:" = ± I). Then there exists a .Iimction IJ. such
that (q"),, are pseudo-orthonormal with respect to the pseudo inner product B
defined hy IJ..

Proof We putx"=/;ol:\'''/:,,, and define BU;g)=LkCkdkxk iff=
Lk Ckqk and g = Lk dkqk' Now, we work as in the previous theorem. I

In this paper, we are going to generalize these results. Indeed, we will
give an expression for the canonical form of the inner (pseudo-innen
products B such that the operator tV is symmetric for B. Also, we charac
terize these inner (pseudo-inner) products giving a relation on its set of
orthonormal polynomials: the (2N + I) term recurrence relation. In order
to illustrate it, we state the result for N = 2.

THEOREM I. Let B he a real symmetric hitinear .limn, then the flJl/owing
conditions are equivalent:

(a) The operator (2 is symmetric fiJI' B, that is B(t2/: oR) = BU: t2g),
.f{Jr al/ polynomials f g.

(b) There exist two filllctions IJ. and \' such that B is delined asflil/ows

B(f; g) = Jf(t) g(t) dlJ.(t) +J(f(t) -f( - t))( g(t) - g( - t)) dv(t). (1.3)
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Moreover, if we put :;(" = Jt" dJ1(t) and M" = 4 Jt" dv(t), then the matrix

if n or k are even,

if nand k are odd.

is pas/tire definite (non-degenerate) if and only if B is an inner product
(pseudo-inner product).

In this case, the set of orthonormal polynomials with respect to an inner
product like (1.3), satisfies the five-term recurrence relation

t
2
q"=a"+2q"+2+ h"+lq"+1+c"q"+h,,q,, l+a"q" 2' (1.4)

where (a"),, is a real sequence without null terms and (h"),,, (c"),, are real
sequences. Also, we get the generalization of Favard's Theorem:

THEOREM 2. Let (q"),, he a set of polynomials satisf."ving the initial condi
tions qo(t) = C t: 0, q 1(t), q 2(t) =0, and the .five-term recurrence relation
( 1.4). Then there exist two functions J1 and v such that the bilinear form

B(f, g) = f f( t) g( t) dJ1( t) +f (f( t) - f( - t))( g( t) - g( - t)) dv( t)

is an inner product and the polynomials (q"),, are orthonormal with respect
to B.

Notice that, in this case, the theorem does not guarantee the positivity
of the measures J1 and v. We give some examples proving that, although
B is an inner product, these measures can not be chosen to be positive. In
a subsequent paper ([02]) some positivity conditions on the measure will
be given in order to extend these inner products from the linear space of
polynomials to an associated Hilbert space.

All these results will be extended for real symmetric bilinear forms B,
such that the operator h (her~ h is a fixed polynomial) is symmetric for B.

Finally, we give a characterization in terms of symmetric operators for
some classes of discrete Sobolev inner products (see Section 3). Orthonor
mal polynomials with respect to these inner products have extensively been
studied the last few years (see [BMI, BM2, MR, K, MV], ... ).

2. THE (2N + I )-TERM RECURRENCE RELATION

In this section, we are going to extend Theorems B, C, and 0 for N> 1.
In order to show the expression for the canonical form of the real
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symmetric bilinear mappings B such that the operator t N is symmetric for
B, we need the following definition: let N be a non-negative integer. Put IV

for a primitive Nth root of the unity. Given a non-negative integer m such
that 0 ~ m ~ N - 1, we define the operator

T : f!lJ -+ f!}m.N

as follows:

1 N- I

Tm.N(f)(t) = N L (w-m)kf(wkt).
k~O

Note that if f = Li aJi, then

(2.1 )

For m = 1 and N = 2, we get T1,2(f)(t) = !(f(t) - f( - t)).
Hence, we state the following:

THEOREM 3. Let B a real symmetric bilinear form, then the follml'ing are
equivalent:

(a) The operator t N is symmetric for B, that is B(tNf, g) = B(f, tNg),
for all polynomials f, g.

(b) There exist functions llo and llm,m' for 1~ m, m' ~ N - 1, ,<vith
llm,m' = llm',m' such that B is defined as follows

B(f, g) = f f(t) g(t) dllo(t)

+ I f Tm,N(f)(t) Tm.N(g)(t) dllm,m,(t),
l~m,m'~N-, I

(c) There exist functions llm,m' for 0 ~ m, m' ~ N - 1, with llm,m' =
llm',m, such that B is defined as follows:

B(f, g) = L f T m,N(f)(t) T m,,,,,,(g)(t) dllm.m(t)·
O~m.m'~N-l

Proof In order to prove (a) -+ (b), put ri" = B( 1, t") and, for 1~ m,
m' ~ N - 1 consider the sequences

n~O, (2,2 )
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n~O, (2.3 )

Note that, since t N is symmetric for B, it follows that f3~m,m') = f3~m"m) and
M(m,m') = M(m',m) We choose the function II such that JIn dll (I) = (X and

n n' rO,-O fl

the functions J1.m,m' such that J1.m,m' = J1.m',m' and

f InN+m+m' dll ,(I) = M(m,m')
rm,m n for n ~ 0, (2.4 )

Again, since the operator IN is symmetric for B, it follows that if i = kN or
J=k'N, then

and if 1~m, m' ~N-l, i=kN+m andj=k'N +m', then

B(ti, I j ) = B({N+m, tk'N+m')

= B(tm, t(k+ k'jN + m') = f3~m+,;p,

(2,5)

(2,6)

Hence, if 1~ m, m' ~ N - 1 and! =:L cit
i
, g =,Lj djt

j are two polynomials,
from (2.1) and (2.4), we have

" d f iN+jN+m+m'd ( )= ~ C jN + m jN+m' t J1.m,m' I
!,J

-" d M(m,m')
- ~ C iN + m jN+m' i+j·

i.}

From (2,5), (2,6), (2.3), and (2,7), we get

B(f, g) = L cAB(l
i
, I

j
)

i,j

(2.7)

it) I,J itj

+ " d B(t iN + m iN + m')~ C jN + m jN+m' , t
l~m,m'~N-l i,j

= L CiNdj(XiN + j +L cidjN(Xj+ jN - L CiNdiN(XU+ j)N
i,J it} i,j

" " d f3(m,m'l+ L. ~ CiN + m jN+m' j+ j
J ~m.m'~N- J it)
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= L c,Nd/J. iN + i +I cidiNIXi+iN - I CiNdiNIXU+/lN
i.j t.j i,j

+ L L Cjiv+mdjiV+nl,CXi;V+.JI\/+m+m'
l~m.m'~N 1 ;,./

+ L I cav +mdjlV+m,M::';"')
l~m.m'::'(l'...r_-I 1• ./

= I CAIX i+ i + I J Tm.N(f)(t) Tm·.N(g)(t) dl1m.m(t)
l,j 1 ~ m.m' ~ ,~'- 1

= Jf(t) g(t) dl1o(t)

+ I f Tm.N(f)(t) Tm'.N(g)(t) dl1m.m(t).
I ~m.m' ~ N-- I

Now, we are going to prove (b)-+(c). Indeed, consider the functions VI

with °~ 1~ N - I such that if n ~°and °~ m ~ N - I then

Jt1lN + m dv ={o,
I Jt" N+ l dl1o,

for m #- I,

for m = I.

with this choice, we have dl1o='Li':o' dv i • Iff is a polynomial thenf(t) =

L~~b Tm.N(f)(t), hence

,\1-' I

Jf(t) g(t) dl1o(t) = II L J Tm.N(f)(t) Tm·.N(g)(t) dVI,
(=o /=0 m+m'=iN+I

and so, Condition (c) follows.
Since Tm.N(tNf)(t) = tNTm.N(f)(t) for°~ m ~ N - I, (c) -+ (a) follows. I
It should be noticed that the operators Tm . N which appear in the

previous theorem can be changed to the operators Rm,."O ~ m ~ N - I
defined by

for any polynomial f = 'Li a,f.
Putting N = 2 in Theorem 3, we obtain Theorem I as a corollary of

Theorem 3.
If we put I1m.m' = °when m #- m' and

Jt" dl1m.m = {O(, ,)2 M
m.. m'

if n#-2m,

if n = 2m,
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in the canonical expression given in previous Theorem, we get the well
known inner products

/Ii I

B(f, g) =f1(t) g(t) dJ1(t) + I M"J1m)(o) glml(O).
m=O

Note that these Sobolev type inner products are not characterized by the
condition that t/li is symmetric for B. In Section 3, we get a complete
characterization of them in terms of symmetric operators.

Now, we are going to extend Favard's Theorem. Given N a positive
integer, and a set of polynomials (p"),, with Po(t) a constant different from
0, we say that the polynomials (p"),, satisfy a (2N + 1)-term recurrence
relation if the formula

N

tNp,,(t) = c".op,,(t) + I (C""P,,_I(t) + c,,+l.Ip,,+,(t)) (2.8)
I~ 1

holds, where (C".N)" is a real sequence without null terms and (c".t)" with
O~/~N-l are real sequences (of course, if 1<0 then C".,=PI=O).

Note that for N = 1, we obtain the three-term recurrence relation for
orthonormal polynomials, and for N = 2, we obtain the five-term
recurrence relation (1.4).

Also, it will be interesting to consider (2N + 1)-term recurrence relation
like

iii

tNp,,(t) = C".op,,(t) + L ((G"G" I) C".IP,,_I(t) + c,,+I.IP,,+/(t)), (2.9)
I~ 1

where (C".N)" is a real sequence without non-null terms, (C"./)" with
o~ I ~ N - I are real sequences and (G,,)n is a sequence of signs (that is
Gn = ±1).

To begin with, it is easy to prove that if the operator t N is symmetric for
an inner (pseudo-inner) product B, then the set of orthonormal (pseudo
orthonormal) polynomials with respect to B satisfies a (2N + 1)-term
recurrence relation like (2.8) (or (2.9)).

The converse result is also true, and is the generalization of Favard's
Theorem:

THEOREM 4. Let N be a positive integer and (Pn)" a set of polynomials
satisfving a (2N + 1i-term recurrence relation as (2.8) (or (2.9)). Then there
exist functions Po and Pm,m' for 1~ m, m' ~ N - 1, with It m.m, = Pm,m' such
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that the polynomials (Pn)n are orthonormal with respect to the inner product
(pseudo-inner product) B defined by

B(f, g) =f f(t) g(t) dj1o(t)

+ L f Tm.N(f)(t) Tm',N(g)(t) dj1m.m,(t).
l.::s:;;m.m'~N-l

Proof The proof is the same as the one for N = 1. Indeed, from the
relation we obtain that dgr(Pn) = n and so the set of polynomials (Pn)n is
a basis in f!IJ. We define an inner product (pseudo-inner product) in the
following way: if f=LkakPk and g=LkbkPk then B(f, g)=Lkakbk
(BI(f, g) = Lk akbkCk if (Pn)n satisfy the pseudo-relation). It is clear that
(Pn)n are orthonormal (pseudo-orthonormal) with respect to B (BI ), and
from the (2N + 1)-term recurrence relation it follows that the operator t N

is symmetric for B (Btl. Now, we apply Theorem 3. I

EXAMPLES. (I) Let us consider two positive measures PI' P2 with sup
port contained in [0, + 00), and their associated orthonormal polynomials
(rn)n, (sn)n respectively. We define the following sequence of polynomials

n~O.

Straightforward computations show that the sequence of polynomials (Pn)n
satisfies a five-term recurrence relation (see (1.4)), with the following
coefficients:

if n = 2k,
if n = 2k + 1,

where (a~)n' (b~)n, (a~)n, (b~)n are the coefficients in the three-term
recurrence relations of the polynomials (rn)n, (sn)n, respectively.

So, the polynomials (Pn)n are orthonormal with respect to an inner
product like (1.3) or like that of part (c) in Theorem 3. Now, we give an
expression (in terms of PI' P2) for the measures which appear in these inner
products. Let us consider the following even positive measures

j1(A)=pdt2: tEA, t~O} +pdt2: tEA, t~O},

O'(A) = P2{t2: tE A, t ~ O} + P2{t2: tEA, t ~O},

and the measure (it is likely a non-positive measure)
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(t 2Jl. is the measure with density t2 with respect to Jl.). Then, we have

93

From these formulas, it follows that the polynomials (Pn)n are orthonormal
with respect to the inner products

1 fa)B(f, g) =:4 0 (f( t) + f( - t))( g( t) + g( - t)) dJl.

+~ Ioo
f(t) -;( - t))(g(t) - tg( - t)) da

and

The converse of this example is true, that is, if a sequence of polynomials
(Pn)n satisfying the initial condition P -l(t) = P - 2(t) =0, Po(t) = Co ~ 0,
Pl(t)=Clt~O and a five-term recurrence relation (1.4) with bn=O for all
n ~°then they are orthonormal with respect to an inner product like the
first above written where Jl. and a are positive measures.

(1.1) Taking rn(t)=L~(t),sn{t)=L~{t) (ex> -l,fJ>O) (as usual
(L~(t))n are the Laguerre polynomials), we get a generalization of the
Hermite polynomials

for n = 2k,

for n = 2k + 1,

which are orthogonal which respect to the inner product

f
+OO 1

B(f, g) = f(t) g(t) It1 2:>+ I e- t dt
- 00
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L a.n
" H,·{/(t)--,,'::0 n [n/2]!

can be derived from the definition of these generalized Hermite polyno
mials and the generating function for the Laguerre polynomials. For
- (X = /3 = ~, we have the classical Hermite polynomials, and for (X = Il - ~ =
/3 - I, we have the generalized Hermite polynomials which were introduced
by Szego (see also [Ch, p. 156]).

(II) As we wrote in the Introduction of this paper, Theorem 4 does
not guarantee the positivity of the measures Jio or Ilm.m" We show an
example for N = 2 which shows that, in fact, although B is an inner
product, these measures cannot be chosen to be positive.

Consider a positive definite sequence ((X"),, such that the sequence defined
by

" _ {(X"'
t,,- 0,

if n = 4k,

otherwise,

is not a positive definite one (for instance, we can take (x" = I/(n + I )). Put

{

-(X",

Pn= Ct.",

0,

if n=4k,

if n = 4k + 2,

otherwise.

Let p be a positive measure such that f I" dp = (x", Il a function such that
fIn dll = I'" and v a function such that f I" dv = /3". Put

B(f, g) = Jf(t) g(t) dll(/) + ~ J(/(1) - f( - 1))(g(/) - g( - I)) dv(t). (2.10)

First of all, suppose that there exist two positive measures Il', v' such that

B(f, g) = Jl(t) g(t) dll' (t) + J(/( I) - f( - 1))( g(t ) - g( - I) ) dv' (t ). (2.11 )

From (2.10) and (2.11), it follows that I',,=B(I, I")=f I" dll', so (I'n)"
should be a positive definite sequence, but by construction, this is not true.

Now, we are going to prove that B is an inner product. Indeed, if
f = Lk Ck I

k is a polynomial, we write f = fa +11 +12 +j~, where
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f, = Lk C4k + J4k + i, i = 0, I, 2, 3. From the above construction, we get: if
i + j = 4k for some k, then

II(t) j,(t) dJ1(t) = f.t;(t) j,(t) dp(t);

if i + j"# 4k, for any k, then

f fr(t) 1,(/) df.1(t) = 0;

if i + j = 4k + 2 for some k, then

fI(t) .0(t) dV(/) = fI(t) f;(t) dp(t);

if i + j "# 2k for any k, then

fI(t) f;(t) dv(t) = 0;

and, if i + j = 4k for some k, then

f1;(/) j,(t) dV(/) = - f f,(t) j,(t) df.1(t).

(2.12)

(2.13 )

(2.14)

(2.15)

(2.16 )

Hence, iff"#D, from (2.10), (2.12), (2.13), (2.14), and (2.15), we have (note
that p is a positive measure):

B(f, f) = BUo +11 +fl + f3,/0 + fl +fl + f,)

=f fo(t) fo(t) dp(t) +f fl(t) f2(/) df.1(t)

3

= I f.r;(t) dp > O.
k~O

So, B is an inner product.

(III) In the previous example, the measure f.1 cannot be chosen to
be positive. Here, we show some examples where the measure f.1 is positive,
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B is an inner product, but the measure v cannot be chosen to be positive.
The next lemma will be the key to show these examples, although it is
interesting in itself:

LEMMA 1. Let T be an infinite real matrix, T= (ti.j)~j~o' For a sequence
of real numbers (a"),,, let us consider thefollmving two sequences of numbers
(0("),, and (/1,,),,:

and

0( =
"

n~O, (2.17 )

a" + to."

a,,+ 1 + t l ,,,

n~O. (2.18 )

a,,_ I + tIl -1.0" ·a2,._1 + t"_I,,,

a,,+ t".o a 2" + t,.,,.

Then, for every finite matrix T there exists a sequence (a"),, such that
0(,,, /1" > 0 for all n ~ O.

Proof Indeed, expanding the determinants which define the sequences
(0(,.)", ({3,,),. by the last row, we get:

It should be noted that the numbers 0(" I' A", {3,,-1 and B" depend on
ao, aI' ..., a2" _ I and the matrix T, but do not depend on a2,,' Hence, we
chose ao> Ito,0 I, a2,. + I = 0 and by recurrence

{
-B"-{3"_lt",,, -A,,}

a2" > max R ' -- .
1',.-1 :X,,_I

From this choice, the lemma follows. I

This lemma says that given an infinite real matrix T, there exists a
positive definite Hankel matrix such that if we modify the Hankel matrix
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by summing the matrix T, the modified matrix which is obtained is also
positive definite. Now, in an inner product defined by

B(f, g) =f f(t) g(t) dll(t) +f (f(t) - f( - t))(g(t) - g( - t)) dv(t),

we modify the Hankel matrix of Il by summing the symmetric real matrix
T= (ti.)~=O' defined by

t . .= {4 JtitJ dv(t),
'.J 0,

if i, j are odd,

if not.

From Lemma 1, we can get examples of inner product B like (1.4) such
that Il is a positive measure but v cannot be chosen to be positive.

In general, given a natural number N and for 1~ m, m' ~ N - 1 a
function Ilm.m' with flm,m' = flm'.m, using Lemma 1, we can find a positive
measure Il such that the symmetric bilinear form defined by

B(f, g) =f f(t) g(t) dflo(t)

+ L f Tm,N(f)(t) Tm'.N(g)(t) dflm,m,(t)
1 ~m.m':!S;N-l

is an inner product, although Ilm,m' are not positive measures.
In the rest of this Section we will obtain the canonical form of the real

symmetric bilinear mappings B for which the operator h (here h is a fixed
polynomial) is symmetric for B.

Let h be a fixed polynomial, and N = dgr(h). It is clear that the following
set of polynomials is a basis of rJ}:

If 0 ~ m ~ N - 1, we are going to define the operators Tm,h related to h, in
the same way as the operators Tm,N for tN, Indeed, for a polynomial f, we
can write f = Lk;;. 0.0';; n';; N _ 1 an,k tnhk. Then we define

Tm,h(f)( t) = L am.k tmhk.
k;;.O

(2,19 )

Notice that, for h(t) = tN, the operator Tm,rN defined by (2.19) is the
operator Tm,N'

Then, we obtain the following extension of Theorem 3.
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THEOREM 5. Let B a real symmetric bilinear form, then the following are
equivalent:

(a) The operator h is symmetric for B, that is B(hf, g) = B(f, hg), for
all polynomials f, g.

(b) There exist functions Pm,m' for 0 ~ m ~ m' ~ N - 1, such that B is
defined as follows:

B(f, g)= L

(c) There exist functions Po and Pm.m,for l~m~m'~N-l, such
that B is defined as follows:

B(f, g) =f f(t) g(t) dpo

+ I
1 ::::;m~m'~N-l

Proof In order to prove (a) -+ (b), we consider the following bases of
[JIJ, (nn and fJDh (the latter is defined above), and the linear mapping
R: [JIJ -+ [JIJ defined by R( tm+ kN) = tmhk, i.e., the mapping for the change of
basis. It is easy to prove that R(tNf) = hR(f) for any polynomial! So the
operator t N is symmetric for the real symmetric bilinear mapping B',
defined by B'(f, g) = B( R(f), R( g)). Hence, from part (c) of Theorem 3, we
have functions vm .m " with 0 ~ m, m' ~ N - 1 such that

B'(f, g)= I f Tm.N(f)(t) Tm',N(g)(t)dvm.m,(t)· (2.20)
O~m~m'~N-l

Now, fixing 0 ~ m, m' ~ N - 1, since the degree of the polynomials tm+ m'hk

is different for different values of k, there exists a function 1J.m.m' such that

f tm+m'hk dlJ ,= f tkN +m+rn
' dv '.rm,m m,m

Hence, we get

As B(f, g)=B'(R-1(f), R-1(g)), Condition (b) follows from (2.20).
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Now, we prove (b)-+(c). Indeed, given O~I~N-l and k~O, we put
au = f t/hk(t) dJ1.o,l(t). Since {tmh\ k ~ 0, 0 ~ m ~ N - I} is a basis of PJ, it
follows that there exists a function J1.o such that

Hence, we get

N-l

L f (TO,h(f)(t) T/,h(g)(t) + T"h(f)(t) TO,h(g)(t» dJ1.o"
,~o

N-l

= L f (TO,h(f)(t) T'.h(g)(t) + T/,h(f)(t) TO,h(g)(t» dJ1.o,
/~O

Iff is a polynomial then f = L ~ :: ~ Tm,hi So, we can write B as

B(f, g) = f f(t) g(t) dJ1.o

+ L
1~m~m'~N-l

and so, Condition (c) follows.
Since Tm,h(hf)(t)=h(t) Tm,h(f)(t), for O~m~N-l, (b)-+(a) follows

easily. I
Note that a h-generalized (2N + 1)-term recurrence relation can be

defined for a polynomial h of degree N, changing the polynomial t N by h
in the formula (2.8)«2.9», Theorem 4 can then be extended for this
h-generalized (2N + 1)-term recurrence relation.

3. INNER PRODUCTS OF DISCRETE SOBOLEV TYPE

During the past few years, several papers have been written about
orthonormal polynomials with respect to an inner product of the form (see
[IKNSI, IKNS 2, BM1, BM2, MR, K, MV], ... )

K

B(f, g) = f f(t) g(t) dJ1. + I fP!)(t) g(l)(t) dJ1." (3.1)
,~ 1

especially when J1./ are discrete measures (see [BM 1, BM2, MR, K,
MV], ... ).

Here, we should refer to the recent preprint [ELMMR], because some
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of the results which have been proved there, are strongly related to the
results we will prove below. In [ELMMR], necessary and sufficient condi
tions are given on the positive measures fl." 1= 1, ..., K, in order that there
exists a real-valued polynomial h symmetric with respect to the inner
product defined by (3.1) (that is, B(hp, q) =B(p, hq) for all polynomials
p, q).

Indeed, the positive measures fl.1 must be purely atomic with a finite
number of mass points, that is, a finite combinations of Dirac deltas.

In this section, we give necessary and sufficient conditions on a real
bilinear form B (not necessarily as (3.1 », in terms of symmetric operators,
in order that B is defined by (3.1) when the measures fl.! are Dirac's deltas
at the same point, or when fl.! = 0 for loF 1, and fl.1 is a finite combination
of Dirac deltas. However, using the same technique, a characterization
could be given for the general case when the measures fl.! are discrete (that
is, finite combinations of Dirac deltas).

Before turning to prove the main results in this Section, we give some
examples:

EXAMPLES. (I) Note that if fl. and fl.1 are positive measures, then B
defined as in (3.1) is an inner product. However, the converse is not true.
An example of this fact is presented below.

We take K = 2. Let (cxn)n be the sequence defined by

3, for n=O,
3

for n = 1,
cx = - 2'n

1
for n~2.

n + l'

Put fl. for a function such that Jtn dfl.(t) =!Y.n for n ~ 0. Now, we define B
as follows:

B(f, g) = ff(t) g(t) dfl. + 21'(0) g'(O).

Since (!Y.n)n is not a positive definite sequence, it is clear that B cannot be
written as

ff(t) g(t) dv(t) +f f'(t) g'(t) dv 1(t) (3.2)
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for positive measures v, vI' In order to prove that B is an inner product,
we observe that IX o = 1+ 2, IX I = ~ - 2 and write B as

B(f, g) =f f(t) get) dX[o,l] + 2f(0) g(O)

- 2(/(0) g'(O) + /,(0) g(O)) + 2/,(0) g'(O).

The result follows because B(f, f) = Sf2(t) dX[o, I] + 2(/(0) - /,(0))2.
Other examples can be given by using Lemma 1.

(II) Just be using Lemma 1, we are going to show that the above
mentioned result in [ELMMR] is sharp in the following way: if we remove
the positivity of the measures /)., which appear in (3.1), then the result does
not hold. Indeed, we show an example of an inner product defined by

B(p, q) = f pet) q(t) dIJ.I(t) +f p'(t) q'(t) d/).2(t),

where /).1 is a positive measure and 1J.2 is a function, such that, the operator
t 3 is symmetric for Band B can not be written as

B(p, q) = f pet) q(t) dvl(t) +f p'(t) q'(t) dv 2(t)

for any positive measure VI and any finite combinations of Dirac deltas V2'

To show this example, let us consider the following matrix T= (tj,j);:"j~O

defined by

{

2'
t··= 2I,J '

0,

if i= 1, j= 2,

if i = 2, j= 1,

otherwise.

From Lemma 1, it follows that there exists a sequence of real numbers
(an)n such that the sequences (iXn)n and ({3n)n defined by (2.17), (2.18) are
positive, Hence, (an)n is a positive definite sequence. Let /)., v be a positive
measure such that Jtn dJ.l(t) = an and a function such that

f tn dv(t) = {I,
0,

if n = 1,
otherwise,

respectively. We define the real symmetric bilinear form B by

B(p, q) = f p(t) q(t) dJ.l(t) +f p'(t) q'(t) dv(t),
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It is clear that B can be written as

B(p, q) =f p(t) q(t) dJ.1(t) + 2(p'(O) q"(O) + p"(O) q'(O)).

From here, it follows that B(t 3p(t), q(t)) = B(p(t), t 3q(t)), that IS t 3 is
symmetric for B, and that this bilinear form cannot be written as

B(p, q) = f p(t) q(t) dv1(t) +f p'(t) q'(t) dV2(t)

for any positive measure VI' and any finite combination of Dirac deltas V2'
But from the definition of B, we get that B(ti, ti) = ai +i + t i.), and since

the numbers f3n are positive, we have that B is an inner product.

Now, we study the special case when the measures J.11' which appear in
(3.1), are Dirac deltas at the same point, say at O. We give the characteriza
tion as a corollary of the following:

THEOREM 6. Let B be a real symmetric bilinear form defined on :?J> and
N a non-negative integer. Then the following are equivalent:

(a) The operator t N is symmetric for B, and B(tNf, tg) = B(tf, tNg) if
f, g are polynomials.

(b) There exists a function J.1 and constants M k.m, 1~ k, In ~ N - 1,
with M k,m = M m.k such that

IV-I

B(f, g) =f f(t) g(t) dJ.1(t) + L Mk,mf1k)(O) g(m)(o).
k,m= 1

Proof We prove (a) -> (b), the converse is straightforward. Consider
the sequence (1./I = B(l, t/l). We put

(3.3 )

if 1~ k, m ~ N - 1. We consider a function J.1 such that Jt/l dJ.1(t) = {1.n' Then
from the hypothesis, we get, if m' or k' are different from 0 and if 1 ~ k,
m~N-l:
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B(f, g) = L ajbjB(t;, tj )
i,j

L a,bjB(t i
, t j )+ L a;bjB(ti, t j )

O~i.j~N~ 1 O~j

N'$;.i

103

1 ~i.j~N-l

+ L a;b;CL j+ j+ L: ajb/L j+ j - L: ajb/x;+j
O~j O:<s;i N~i

N~i N~j N~.i

i,j l~i.j~N-l

Since i!aj=f(i)(O), we put Mk,m=(k!m!)-l M~,m' to find

N-l
B(f, g) = f f(t) g(t) dJ.1(t) + L: Mk,mf(k)(O) g(m)(o).

k,m ~ 1

COROLLARY 7. Let B be a real symmetric bilinear form defined on fljJ and
N a non-negative integer. Then the following are equivalent:

(a) The operator tN is symmetric for B; B(tNf, tg)=B(tf, tNg) iff, g
are polynomials, and B( tk, tm) = B( 1, tk + m) when 1~ k, m ~ N - 1 and
k i'm.

(b) There exists a function J.1 and constants M k' 1 ~ k ~ N - 1, such
that

N-l
B(f, g) = f f(t) g(t) dJ.1(t) + I. Mkf(k)(O) g(k)(O).

k~l

Proof From B(tk, tm ) = B(1, tk+m) when 1~ k, m ~ N - 1 and k i' m, if
follows that the constants M~,m defined in (3.3) are equal to 0 when
k i' m. I

Note that a similar characterization can be given when the measures J.11
are Dirac deltas at the same point c E R. In this case, the polynomial t N

which appears in Theorem 6 and Corollary 7, must be changed to the
polynomial (t - C )N.
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Now, we are going to study the real bilinear forms defined in (3.1), when
p, = 0 for 1"# 1 and

(we put ba, for the Dirac delta with mass at the point a,. This functional
is also denoted by b(x - a,».

The following two Lemmas will be useful to give the characterization of
these bilinear forms, although they are interesting in themselves:

LEMMA 2. Let B be a real symmetric bilinear form defined on f!j) and K
a non-negative integer. Consider a finite sequence of real numbers (a, )~~ I

and non-negative integers nt, 1~/~K. Let h.be the polynomial h(t)=
(t-alt' .. ·(t-aKtK and N=nl+'" +nK=dgr(h). Then the following
are equivalent:

(a) Iff, g are polynomials, then B(hf, g) = O.

(b) There exist constants M i • i ,/./, with O~i~n,-I,O~j~n/,-l,

1~ I, I' ~ K and M i •i ,/./, = M i . i.",/, such that the bilinear form B is defined by

K

B(f, g)= L
''/' ~ I

Proof (b) -+ (a) is straightforward. Hence, we only prove (a) -+ (b). We
consider the following basis of f!J:

Put Wi.' = (t - ad n
, (t - a2t2

••• (t - ad! where, 1~ i~ n, for 1= 2, ..., K - 1,
o~ i ~ n I for 1= 1 and 1~ i ~ nK- 1 for 1= K.

Since any polynomial p can be written as p = qh + r, where q and rare
polynomials and dgr(r) ~ N - 1, it follows that if two bilinear forms B, B I

satisfy condition a) and B(f, g) = B 1(f, g) when dgr(f), dgr( g) ~ N - 1,
then B = B I' SO, given B satisfying condition (a), it is sufficient to prove
that there exist constants Mi,i.,./, with O~i~n,-I, O~j~n/,-I, 1 ~/,

I' ~ K and M i •i",,' = Mi. !, "'/ such that the bilinear form B I defined

K

BI(f, g)= L
,,/,~ 1

is equal to B, when dgr(f), dgr(g) ~ N - 1. Since the polynomials Wi.' when
1~ i ~ n, for 1= 2, ..., K - 1, 0 ~ i ~ n I for 1= 1 and 1~ i ~ n K - 1 for 1= K
are a basis of

f!JN _ I = {p: p is a polynomial of degree ~ N - 1},
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the previous fact is equivalent with the existence of constants M i,j,I,1' with
Mi,j,I,I' = M j,i,I',1 such that

(3.4 )

when 1~ i ~ nl, 1~j~ nl' for I, l' = 2, "', K - 1, 0 ~ i, j ~ n 1 for I, I' = 1 and
1~ i, j ~ n K - 1 for /, l' = K.

Now, note that (3.4) gives a system of N 2 linear equations with
unknowns M i,j,I,I"

We write these equations (3.4) in the following order:

(Wnx-1,K, Wnx-I,K)--(Wnx-l,K' W nx -2.K)-- ... --(Wnx - 1•K , 1)

--(Wnx -2.K, Wnx-l,K)--(Wnx-2.K, W nx - 2,K)-- ... --(Wnx - 2,K, 1)

-- '"

Thus, (3.4) actually gives a triangular system of N 2 linear equations with
unknowns M i• j,I.I" And so, these constants are determinated by (3.4).

Since B is symmetric and from the definition of B I, the condition
Mi,j,I,I' = M j.i,I'.1 follows. Hence, the Lemma is proved. I

LEMMA 3. Let B be a real symmetric bilinear form defined on 9, and K
a non-negative integer. Consider a finite sequence of real numbers (01)f~ I and
non-negative integers nl, 1~ I ~ K. Let h be the polynomial h(t) =
(t-a1t1···(t-aKtx and N=n 1 + .. · +nK=dgr(h). Then the following
are equivalent:

(a) There exists a function J1., constants Mi,j.I.I' with 0~i~nl-1,

o~ j ~ nl' - 1, 1~ I, l' ~ N - 1 and M i.j.I,1' = M j,i,I',1 such that the bilinear
form B is defined as

K n/-l nr-1

B(f,g)=ff(t)g(t)dJ1.(t)+ L L L: M i,j",l'f(l)(a, )g(J)(al')'
1,1' ~ 1 i ~ 0 j = 0

(b) The operator h is symmetric for Band B(hf, tg) = B( if, hg) for all
polynomials f, g.

Proof We prove (b) -- (a).
Let ath={vm+iN=tmhi:0~m~N-1,i~0} be the basis of 9, defined

in the previous Section, Given 0 ~ m ~ N - 1 and i ~ 0, consider the
sequence am,i= B(1, tmh i

). Since ath is a basis of f/, there exists a function



106 ANTONIO J. DURAN

if i ~ I or j ~ I,

if i = 0 and j = O.

v such that f tmh i dv(t) = am.i . Now, we define the real symmetric bilinear
forms B 1 and B2 by

B\(xmh i, x'hi )= {B(xmh
i
, x'h

i
),

f xmx' dv( t),

and B 2(f, g) = B(f, g) - B](f, g).
We proceed in several steps:

First step. For all polynomials f, g, we have B 1(hf, g) = B(hf, g), and so
B2(hf, g) = O. The step follows because by definition of B], we get

when Vm + iN belongs to the basis :!Jh.

Second step. For all polynomialsf, g, we have B](tf, g)=B](f, tg).
It will be enough to prove this for f, g belonging to the basis :!Jh. If we

consider f = tmh i and g = t'hi, with i ~ I or j ~ 1, then

B1(ttmhi, t'hi )= B(ttmhi, t'hi) = B(ttm, t'hi+i)=B(tmh, tt'hi+i~])

= B(tmhi, tt'hi ) = B](tmhi, tt'hi ),

where we have used the first step and Condition (b).
Note that the second step follows if we prove that B](tN, tm)=

f tNtmdv(t) when 1~ m ~ N -1. But, if we put tN= L~~-o] b,t' + bNh, we
get

N-]

B](t N, tm)= L b,B](t', tm)+ bNB](h, tm)
,~o

N-I

= L b, f t'tm dv(t) + bNB(h, tm)
,~o

N-]

= L b, f t'tm dv(t) + bNB(I, tmh)
,~o

N-l

= L b, f t'tm dv(t) + bNf tmh dv(t)
,~o

= fCt: b,t' + bNh) tmdv(t) = f tNtmdv(t).

Hence, the second step is proved.
Now, from Theorem 3 for N = 1, a function p. such that B](f, g) =

f f(t) g(t) dp. is obtained. It is enough to apply Lemma 2 in order to finish
the proof. I
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Given a finite sequence of real numbers (a, )f~ l' consider the following
polynomials

(3.5 )

for i = 1, 2 and I ~ m ~ K.

THEOREM 8. Let B be a symmetric bilinear form defined on & and K
a non-negative integer. Consider a finite sequence of real numbers (a,)~ I'

Let h be the polynomial h(t) = (t - a 1f··· (t - aK f Then the foliOlving are
equivalent:

(a) There exists a function J1. and constants M, with I ~ I ~ K, such
that the bilinear form B is defined by

K

B(f, g) =f f(t) g(t) dJ1.(t) + I MJ'(a,) g'(a,).
,~ 1

(b) The operator h is symmetric for B; B(hf, tg)=B(tf, hg) for all
polynomials f, g, and

(3.6 )

for i, j = 1, 2, 1~ m, m' ~ K and m ¥- m', where qj.m are the polynomials
defined in (3.5).

Proof Again, we only prove (b) --+ (a).
From Condition (b) and Lemma 3, we obtain the following expression

for B:

K 1

f "" fn ('jB(f,g)= f(t)g(t)djl(t)+ L..- L..- M j,j,'.1' '(a,)g}(al')'
',1'= I j.j~O

From the choice of the polynomials qj.m, we obtain

(3.7)

if and only if i = 1 and 1= m, (3.8 )

and

if and only if i = 0, I and 1= m. (3.9)

Now, from (3.6), (3.7), and (3.8) we get MI,l,/,/'=O if 1#1', and from (3,6),
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(3.7), and (3.9) we get M 0,1,1,1' = 0 if I ""f'. Hence, from the expression (3.7),
we get

K

B(f, g) = f f( t) g( t) dj.t(t) + L M 1,I,1,If'(a/) g'(a/)
1~1

K

+ L MO,I,I,,(f(a,) g'(a,) + f'(a,) g(ad)·
I~ I

Putting v = 'Lf= 1 M O,I,l,/Ja" we have

K

L: MO,I",,(f(a,) g'(ad + f'(a,) g(a,» = f (fg)' (t) dv(t).
,~ 1

(3.10 )

The operator t is symmetric for the real symmetric bilinear form B 1(f, g) =
J(fg)' (t) dv, hence there exists a function p such that B 1(f, g) =
Jf(t) g(t) dp. If we put this expression for B1 in (3.10), we get

K

B(f, g) = f f(t) g(t)(dj.t(t) + dp(t» + L: Ml,I",J'(a,) g'(a,),
,~ I

and so, the theorem is proved. I
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